A Tour of the Cell

KEY CONCEPTS

6.1 Biologists use microscopes and the tools of biochemistry to study cells
6.2 Eukaryotic cells have internal membranes that compartmentalize their functions
6.3 The eukaryotic cell’s genetic instructions are housed in the nucleus and carried out by the ribosomes
6.4 The endomembrane system regulates protein traffic and performs metabolic functions in the cell
6.5 Mitochondria and chloroplasts change energy from one form to another
6.6 The cytoskeleton is a network of fibers that organizes structures and activities in the cell
6.7 Extracellular components and connections between cells help coordinate cellular activities

OVERVIEW

The Fundamental Units of Life

Given the scope of biology, you may wonder sometimes how you will ever learn all the material in this course! The answer involves cells, which are as fundamental to the living systems of biology as the atom is to chemistry. The contraction of muscle cells moves your eyes as you read this sentence. The words on the page are translated into signals that nerve cells carry to your brain. Figure 6.1 shows extensions from one nerve cell (purple) making contact with another nerve cell (orange) in the brain. As you study, your goal is to make connections like these that solidify memories and permit learning to occur.

All organisms are made of cells. In the hierarchy of biological organization, the cell is the simplest collection of matter that can be alive. Indeed, many forms of life exist as single-celled organisms. More complex organisms, including plants and animals, are multicellular; their bodies are cooperatives of many kinds of specialized cells that could not survive for long on their own. Even when cells are arranged into higher levels of organization, such as tissues and organs, the cell remains the organism’s basic unit of structure and function.

All cells are related by their descent from earlier cells. However, they have been modified in many different ways during the long evolutionary history of life on Earth. But although cells can differ substantially from one another, they share common features. In this chapter, we’ll first examine the tools and techniques that allow us to understand cells, then tour the cell and become acquainted with its components.

CONCEPT 6.1

Biologists use microscopes and the tools of biochemistry to study cells

How can cell biologists investigate the inner workings of a cell, usually too small to be seen by the unaided eye? Before we tour the cell, it will be helpful to learn how cells are studied.

Microscopy

The development of instruments that extend the human senses has gone hand in hand with the advance of science. The discovery and early study of cells progressed with the invention of microscopes in 1590 and their refinement during the 1600s. Cell walls were first seen by Robert Hooke in 1665 as he looked through a microscope at dead cells from the bark of an oak tree. But it took the wonderfully crafted lenses of Antoni van Leeuwenhoek to visualize living cells. Imagine Hooke’s awe when he visited van Leeuwenhoek in 1674 and the world of microorganisms—what his host called “very little animalcules”—was revealed to him.

The microscopes first used by Renaissance scientists, as well as the microscopes you are likely to use in the laboratory, are
all light microscopes. In a **light microscope (LM)**, visible light is passed through the specimen and then through glass lenses. The lenses refract (bend) the light in such a way that the image of the specimen is magnified as it is projected into the eye or into a camera (see Appendix D).

Three important parameters in microscopy are magnification, resolution, and contrast. **Magnification** is the ratio of an object’s image size to its real size. Light microscopes can magnify effectively to about 1,000 times the actual size of the specimen; at greater magnifications, additional details cannot be seen clearly. **Resolution** is a measure of the clarity of the image; it is the minimum distance two points can be separated and still be distinguished as two points. For example, what appears to the unaided eye as one star in the sky may be resolved as twin stars with a telescope, which has a higher resolving ability than the eye. Similarly, using standard techniques, the light microscope cannot resolve detail finer than about 0.2 micrometer (µm), or 200 nanometers (nm), regardless of the magnification (Figure 6.2). The third parameter, **contrast**, accentuates differences in parts of the sample. Improvements in light microscopy have included new methods for enhancing contrast, such as staining or labeling cell components to stand out visually. **Figure 6.3**, on the next page, shows different types of microscopy; study this figure as you read the rest of this section.

Until recently, the resolution barrier prevented cell biologists from using standard light microscopy to study **organelles**, the membrane-enclosed structures within eukaryotic cells. To see these structures in any detail required the development of a new instrument. In the 1950s, the electron microscope was introduced to biology. Rather than light, the **electron microscope (EM)** focuses a beam of electrons through the specimen or onto its surface (see Appendix D). Resolution is inversely related to the wavelength of the radiation a microscope uses for imaging, and electron beams have much shorter wavelengths than visible light. Modern electron microscopes can theoretically achieve a resolution of about 0.002 nm, though in practice they usually cannot resolve structures smaller than about 2 nm across. Still, this is a hundredfold improvement over the standard light microscope.

The scanning electron microscope (SEM) is especially useful for detailed study of the topography of a specimen (see Figure 6.3). The electron beam scans the surface of the sample, usually coated with a thin film of gold. The beam excites electrons on the surface, and these secondary electrons are detected by a device that translates the pattern of electrons into an electronic signal to a video screen. The result is an image of the specimen’s surface that appears three-dimensional.

The transmission electron microscope (TEM) is used to study the internal structure of cells (see Figure 6.3). The TEM aims an electron beam through a very thin section of the specimen, similar to the way a light microscope transmits light through a slide. The specimen has been stained with atoms of heavy metals, which attach to certain cellular structures, thus enhancing the electron density of some parts of the cell more than others. The electrons passing through the specimen are scattered more in the denser regions, so fewer are transmitted. The image displays the pattern of transmitted electrons. Instead of using glass lenses, the TEM uses electromagnets as lenses to bend the paths of the electrons, ultimately focusing the image onto a monitor for viewing.

Electron microscopes have revealed many organelles and other subcellular structures that were impossible to resolve with the light microscope. But the light microscope offers advantages, especially in studying living cells. A disadvantage of
Light Microscopy (LM)

Brightfield (unstained specimen). Light passes directly through the specimen. Unless the cell is naturally pigmented or artificially stained, the image has little contrast. (The first four light micrographs show human cheek epithelial cells; the scale bar pertains to all four micrographs.)

Brightfield (stained specimen). Staining with various dyes enhances contrast. Most staining procedures require that cells be fixed (preserved).

Phase-contrast. Variations in density within the specimen are amplified to enhance contrast in unstained cells, which is especially useful for examining living, unpigmented cells.

Differential-interference-contrast (Nomarski). As in phase-contrast microscopy, optical modifications are used to exaggerate differences in density, making the image appear almost 3-D.

Fluorescence. The locations of specific molecules in the cell can be revealed by labeling the molecules with fluorescent dyes or antibodies; some cells have molecules that fluoresce on their own. Fluorescent substances absorb ultraviolet radiation and emit visible light. In this fluorescently labeled uterine cell, nuclear material is blue, organelles called mitochondria are orange, and the cell’s “skeleton” is green.

Confocal. The top image is a standard fluorescence micrograph of fluorescently labeled nervous tissue (nerve cells are green, support cells are orange, and regions of overlap are yellow); below it is a confocal image of the same tissue. Using a laser, this “optical sectioning” technique eliminates out-of-focus light from a thick sample, creating a single plane of fluorescence in the image. By capturing sharp images at many different planes, a 3-D reconstruction can be created. The standard image is blurry because out-of-focus light is not excluded.

Deconvolution. The top of this split image is a compilation of standard fluorescence micrographs through the depth of a white blood cell. Below is an image of the same cell reconstructed from many blurry images at different planes, each of which was processed using deconvolution software. This process digitally removes out-of-focus light and reassigns it to its source, creating a much sharper 3-D image.

Super-resolution. On the top is a confocal image of part of a nerve cell, using a fluorescent label that binds to a molecule clustered in small sacs in the cell (vesicles) that are 40 nm in diameter. The greenish-yellow spots are blurry because 40 nm is below the 200-nm limit of resolution for standard light microscopy. Below is an image of the same part of the cell, seen using a new “super-resolution” technique. Sophisticated equipment is used to light up individual fluorescent molecules and record their position. Combining information from many molecules in different places “breaks” the limit of resolution, resulting in the sharp greenish-yellow dots seen here. (Each dot is a 40-nm vesicle.)

Electron Microscopy (EM)

Scanning electron microscopy (SEM). Micrographs taken with a scanning electron microscope show a 3-D image of the surface of a specimen. This SEM shows the surface of a cell from a trachea (windpipe) covered with cilia. Beating of the cilia helps move inhaled debris upward toward the throat. The SEM and TEM shown here have been artificially colorized. (Electron micrographs are black and white, but are often artificially colorized to highlight particular structures.)

Transmission electron microscopy (TEM). A transmission electron microscope profiles a thin section of a specimen. Here we see a section through a tracheal cell, revealing its internal structure. In preparing the TEM, some cilia were cut along their lengths, creating longitudinal sections, while other cilia were cut straight across, creating cross sections.
electron microscopy is that the methods used to prepare the specimen kill the cells. For all microscopy techniques, in fact, specimen preparation can introduce artifacts, structural features seen in micrographs that do not exist in the living cell.

In the past several decades, light microscopy has been revitalized by major technical advances (see Figure 6.3). Labeling individual cellular molecules or structures with fluorescent markers has made it possible to see such structures with increasing detail. In addition, both confocal and deconvolution microscopy have sharpened images of three-dimensional tissues and cells. Finally, over the past ten years, a group of new techniques and labeling molecules have allowed researchers to “break” the resolution barrier and distinguish subcellular structures as small as 10–20 nm across. As this “super-resolution microscopy” becomes more widespread, the images we’ll see of living cells may well be as awe-inspiring to us as van Leeuwenhoek’s were to Robert Hooke 350 years ago.

Microscopes are the most important tools of cytology, the study of cell structure. To understand the function of each structure, however, required the integration of cytology and biochemistry, the study of the chemical processes (metabolism) of cells.

Cell Fractionation

A useful technique for studying cell structure and function is cell fractionation, which takes cells apart and separates major organelles and other subcellular structures from one another (Figure 6.4). The instrument used is the centrifuge, which spins test tubes holding mixtures of disrupted cells at a series of increasing speeds. At each speed, the resulting force causes a fraction of the cell components to settle to the bottom of the tube, forming a pellet. At lower speeds, the pellet consists of larger components, and higher speeds yield a pellet with smaller components.

Cell fractionation enables researchers to prepare specific cell components in bulk and identify their functions, a task not usually possible with intact cells. For example, on one of the cell fractions, biochemical tests showed the presence of enzymes involved in cellular respiration, while electron microscopy revealed large numbers of the organelles called mitochondria. Together, these data helped biologists determine that mitochondria are the sites of cellular respiration. Biochemistry and cytology thus complement each other in correlating cell function with structure.

CONCEPT CHECK 6.1

1. How do stains used for light microscopy compare with those used for electron microscopy?
2. **WHAT IF?** Which type of microscope would you use to study (a) the changes in shape of a living white blood cell and (b) the details of surface texture of a hair?

For suggested answers, see Appendix A.

RESULTS In early experiments, researchers used microscopy to identify the organelles in each pellet and biochemical methods to determine their metabolic functions. These identifications established a baseline for this method, enabling today’s researchers to know which cell fraction they should collect in order to isolate and study particular organelles.